THE GUIDE TO GRADUATE STUDY

IN

THE DEPARTMENT OF MOLECULAR, CELLULAR AND DEVELOPMENTAL BIOLOGY
University of California
Santa Barbara
September, 2010
MCDB GRADUATE PROGRAMS

PROGRAM STAFF AND FACULTY
Staff Graduate Advisor
Faculty Graduate Advisor
Graduate Committee
Department Chair

CURRICULAR AND GRADE REQUIREMENTS
Registration
Undergraduate Preparation
Language Requirement

MASTERS PROGRAMS
Plan 1 (thesis)
Plan 2 (examination)
MA Comprehensive Examination
Teaching Assistantships

DOCTORAL PROGRAM
Brief Outline of MCDB Ph.D. Program
Course requirements
Teaching Requirements
Academic Standards
Laboratory Rotations
Ph.D. Dissertation Committee

Ph.D. PROPOSITION EXAMINATION
Proposition Examination
Prior to the Examination
Examination Committee
Nature of Proposition
Submission of Specific Aims
Scheduling Examination
Submission of Proposition
Proposition Format and Content
Consultation on Proposition
Oral Defense of Proposition
Evaluation of Oral Examination
Repetition of Proposition Examination

PERIODIC EVALUATION OF STUDENT PROGRESS AND STATUS
Monitoring Progress of Student after Advancement to Candidacy

DOCTORAL DISSERTATION AND MASTERS THESIS

PETITIONS
Leaves of Absence
Adding the M.A. Program by Ph.D. Program Students
Transfers Between Graduate Programs

FINANCIAL AID
Appendix I – Preapproved Graduate Elective Lecture Courses
Appendix II – MCDB Graduate Course Descriptions
GRADUATE PROGRAMS IN MOLECULAR, CELLULAR, AND DEVELOPMENTAL BIOLOGY

The MCDB Department offers the Molecular, Cellular, and Developmental Biology (MCDB) Departmental Ph.D. and M.A. Programs. The policies, procedures and requirements pertaining to these programs are outlined in this Guide, which is updated yearly by the Graduate Committee.

Students may be admitted to M.A., M.A./Ph.D., or Ph.D. programs. Admission to the combined M.A./Ph.D. program may be sought by applicants who wish to obtain both degrees, or such admission may be granted to applicants to a Ph.D. program when, in the judgment of the Admissions Committee, they may be expected to benefit from the implied, more deliberate rate of progress. Typically, the records of such applicants show certain gaps in preparation for graduate work. M.A./Ph.D. students may petition later that the M.A. requirement be dropped (see PETITIONS). Although the M.A. program provides two options -- Plan 1 (thesis) or Plan 2 (examination) - students are admitted initially, as a rule, only under Plan 2. Students may petition later for transfer to Plan 1 (see PETITIONS).

PROGRAM STAFF AND FACULTY

Staff Graduate Advisor. Mr. Tony Tieu serves as the Staff Graduate Advisor for the MCDB programs (Life Sciences Building, Room 3314; phone 893-8499; e-mail tieu@lifesci.ucsb.edu). The Staff Graduate Advisor provides administrative support for the graduate programs: (1) interprets policies and procedures for faculty and students; (2) advises students on admission, registration, fellowships, oral examination, petitions; (3) tracks academic and TA performance and makes recommendations to the Faculty Advisor on probation/dismissal; (4) first line of support to the Faculty Graduate Advisor and Graduate Committee; (5) assigns TA appointments and offsets fees; and (6) serves as liaison with the Graduate Division, Registrar and other campus departments. The Staff Advisor should be consulted regarding student status and academic progress.

Faculty Graduate Advisor. Dr. Michael Mahan is the Faculty Graduate Advisor (BIO II, Room 2129, phone 893-7160 email mahan@lifesci.ucsb.edu). The Faculty Graduate Advisor represents the Graduate Division and serves to implement graduate program policies. The Advisor approves enrollment plans and petitions (leaves of absence, etc., see PETITIONS). The Advisor may refer matters to the appropriate MCDB committees or faculty.

Graduate Committee. MCDB Graduate Committee members are: Dr. Michael Mahan (Faculty Graduate Advisor), Drs. Christopher Hayes, John Lew, and Thomas Weimbs. The Graduate Committee acts on behalf of the program faculty in reviewing and implementing graduate program policies. The Committee may refer matters for consideration or action by the MCDB program faculty. The Committee makes decisions on admissions into, and transfers between, graduate programs; makes recommendations for University- or Department-administered fellowships and tuition grants, and awards certain traineeship funds available to the program (Amgen and Pacific Merit Fellowships). When acting to set policy regarding the allocation of traineeship funds, the Committee is expanded to include the Chair of the MCDB Department.

Departmental Chair. Dr. Joel Rothman is Chair of the MCDB Department.
CURRICULAR AND GRADE REQUIREMENTS

Registration. It is the student's responsibility to complete class registration for each quarter, when due, via registration with the online GOLD system. (Late registration incurs a $50 fee). Students who are associated with a research advisor are expected to consult with their research advisor prior to registration. All students are expected to inform the Staff Graduate Advisor of their registration plans and consult with the Staff Graduate Advisor regarding their progress toward meeting program requirements.

Undergraduate Preparation. Students in all programs are expected to have completed the following undergraduate courses (suitable UCSB equivalents are identified in parentheses):

- One year of organic chemistry, with laboratory (Chemistry 130A-B-C and 6A-B-C);
- One year of biochemistry/molecular biology, with laboratory (MCDB 108A-B-C and 109L);
- Two quarters of genetics (MCDB 101A-B).

Students may be admitted with deficiencies in their undergraduate preparation but they are expected to rectify these through the satisfactory completion of specified undergraduate courses during the first year of graduate study. Course deficiencies will be identified on entrance, in consultation with the Faculty Graduate Advisor. Such courses will earn no credit toward any unit requirement for a graduate degree.

Language Requirement. All graduate students are expected to demonstrate proficiency with English in all written examinations. Students whose native language is not English are required, as a matter of University policy, to complete a placement examination and courses in the "English as a Second Language" (ESL) program until they earn an exemption from further ESL course attendance. All prospective international Teaching Assistants (TAs) are required to take the TA Language Evaluation in order to be certified for sole classroom teaching responsibility. This evaluation is conducted by faculty of the English as a Second Language (ESL) Program and the examinee’s department at the beginning of each quarter. It requires the prospective TA to give a brief oral presentation in English and respond to questions. Students may contact the ESL program assistant for further information. The Staff Graduate Advisor should be contacted for further details.

MASTERS PROGRAMS

It is expected that all MA students will be ‘full time’ students and register for at least 12 units each quarter.

Plan 1 (Thesis) Program Requirements: (1) a research thesis, (2) graduate core course modules (16 units), and (3) a minimum of 30 units (core modules and elective courses) of upper-division and graduate coursework.

1. Students must receive an average of a B or better in the core course modules given each quarter and no grade lower than a "C" in a module.
2. Students must receive a B or better in each elective course (see Appendix I for pre-approved elective course list); courses outside the department may be substituted upon prior written approval of the Faculty Graduate Advisor.
3. Up to 4 units of literature courses (e.g., MCDB 265, 266, 268 290, 595) may be counted toward the degree unit requirement. No more than one half of the units counted toward the degree can be comprised of MCDB 596 research coursework.
4. Certain graduate lecture courses in the Interdepartmental BMSE program may count toward the degree (BMSE 242, 245, 246, 254, 256A, 256B).

All required graduate lecture courses are to be taken for a grade. Units in the following courses may not be counted towards the degree unit requirement: MCDB 260, 262, 263, 269, 500, 501, and 502. Students are required to sign up for the seminars: MCDB 260, 262, 263.

Plan 1 Core Lecture Course Modules

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCDB 235</td>
<td>Experimental Strategies in Molecular Genetics</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>BMSE 205A</td>
<td>Biochemical Kinetics</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>MCDB 229</td>
<td>Macromolecular Structure</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>MCDB 220A</td>
<td>Chromosomes and Cell Cycle</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 220B</td>
<td>The Cytoskeleton</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 220C</td>
<td>Membrane Dynamics and Cell-Cell Interactions</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 230</td>
<td>Gene Regulation</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 223</td>
<td>Signal Transduction</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>MCDB 225</td>
<td>Development</td>
<td>2</td>
<td>S</td>
</tr>
</tbody>
</table>

Plan 2 (Examination) Program Requirements: (1) graduate core course modules (16 units), and (2) a minimum of 36 units (core modules and elective courses) of upper-division and graduate coursework.

1. Students must receive an average of a B or better in the core course modules given each quarter and no grade lower than a "C" in a module.
2. Students must receive a B or better in each elective course (see Appendix I for pre-approved elective course list); courses outside the department may be substituted upon prior written approval of the Faculty Graduate Advisor.
3. Up to 4 units of literature courses (e.g., MCDB 265, 266, 268, 290, 595) may be counted toward the degree unit requirement. Up to 6 units of MCDB 596 research coursework may count toward the degree unit requirement.
4. Certain graduate lecture courses in the Interdepartmental BMSE program may count toward the degree (BMSE 242, 245, 246, 254, 256A, 256B).
5. Upper-division undergraduate lecture courses may count toward the degree with the approval of the Faculty Graduate Advisor.

All required graduate lecture courses are to be taken for a grade. Units in the following courses may not be counted towards the degree unit requirement: MCDB 260, 262, 263, 269, 500, 501, and 502. Students are required to sign up for the seminars: MCDB 260, 262, 263.

Plan 2 Core Lecture Course Modules

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCDB 235</td>
<td>Experimental Strategies in Molecular Genetics</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>BMSE 205A</td>
<td>Biochemical Kinetics</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>MCDB 229</td>
<td>Macromolecular Structure</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>MCDB 220A</td>
<td>Chromosomes and Cell Cycle</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 220B</td>
<td>The Cytoskeleton</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 220C</td>
<td>Membrane Dynamics and Cell-Cell Interactions</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 230</td>
<td>Gene Regulation</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 223</td>
<td>Signal Transduction</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>MCDB 225</td>
<td>Development</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>Electives</td>
<td>At least two additional MCDB graduate lecture courses</td>
<td>Variable</td>
<td>F, W, S</td>
</tr>
</tbody>
</table>

(see Appendix I for list; others approved by petition).
M.A. Comprehensive Examination. The comprehensive examination for students enrolled in the M.A. Plan 2 (examination) program consists of completion of core modules with an average of a B or better in the core course modules given each quarter and no grade lower than a "C" in a module.

Teaching Assistantships. Students with Teaching Assistant (TA) appointments must also complete the appropriate TA orientation and techniques courses (MCDB 500 and 502; taken once, without degree credit).

When serving as a TA, students should also enroll in the TA practice course (MCDB 501) for the appropriate number of units (maximally 4 units for a 50% TA ship assignment; without degree credit).

Students must maintain a 3.0 or better GPA to qualify for a TA appointment. If the GPA falls below 3.0, the student may petition for an exception to be granted.
DOCTORAL PROGRAM

Brief Outline of MCDB Ph.D. Program:

• Year One
 - Quarterly lab rotations (FWS)
 - Take MCDB core lecture courses and electives (FWS; see below)
 - Two literature seminar courses (student presentation of literature); outside seminar speaker courses (FWS) (see below)
 - MCDB 221 (Spring Quarter of 1st or 2nd year)
 - Decide on a dissertation advisor/laboratory by end of Spring Quarter
 - Non-CA residents are expected to CHANGE THEIR RESIDENCY STATUS to CA before the following Fall quarter

• Year Two
 - Finish any required course work (see below)
 - Enrollment in seminar (FWS) and two literature courses
 - MCDB 221 (Spring Quarter of 1st or 2nd year)
 - Dissertation committee formed and convened by spring quarter; submit short report to Graduate Program Assistant regarding the meeting

• Year Three
 - Submit candidacy exam proposal topic in Fall quarter (September 15) for approval by graduate committee
 - Advancement to candidacy upon passing exam and satisfactory completion of all required coursework
 - Continue enrollment in seminar (FWS) and literature courses
 - Two literature courses per year until advanced to candidacy (if advanced by end of Fall quarter, only 1 is required during the third year, if advanced by end of Winter quarter, 2 are required during the third year).

• Subsequent Years
 - Continue enrollment in seminar courses (FWS)
 - If necessary, complete 2 quarter teaching requirement
 - Meet with dissertation committee at least once per year to evaluate progress

• Completion of Doctoral Degree
 - Confirm all course work and teaching requirements for PhD degree are met
 - Prepare and file doctoral dissertation; enroll in MCDB599 (instead of MCDB596)
 - Present final defense/seminar

It is expected that all Ph.D. students be enrolled as ‘full time’ students and earn a minimum of 12 course units each quarter, and that most of the course requirements (see below) will be completed during the first year of graduate study. All course requirements must be completed prior to advancement to candidacy.
Required Courses for Doctoral Degree (taken prior to advancement to candidacy)

Ph.D. Core Lecture Course Modules

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCDB 235</td>
<td>Experimental Strategies in Molecular Genetics</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>BMSE 205A</td>
<td>Biochemical Kinetics</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>MCDB 229</td>
<td>Macromolecular Structure</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>MCDB 220A</td>
<td>Chromosomes and Cell Cycle</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 220B</td>
<td>The Cytoskeleton</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 220C</td>
<td>Membrane Dynamics and Cell-Cell Interactions</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 230</td>
<td>Gene Regulation</td>
<td>2</td>
<td>W</td>
</tr>
<tr>
<td>MCDB 223</td>
<td>Signal Transduction</td>
<td>2</td>
<td>S</td>
</tr>
<tr>
<td>MCDB 225</td>
<td>Development</td>
<td>2</td>
<td>S</td>
</tr>
</tbody>
</table>

Other Required Lecture Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCDB 221</td>
<td>Preparation and Evaluation of Research Proposals</td>
<td>2</td>
<td>S</td>
</tr>
</tbody>
</table>

Electives

At least one additional graduate lecture course of the 200 series (see Appendix I for list; others approved by petition).

Required Seminar Courses (excluding laboratory group meetings)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCDB 260</td>
<td>Research Seminar in MCDB (faculty speaker)</td>
<td>1</td>
<td>F, W, S</td>
</tr>
<tr>
<td>MCDB 262</td>
<td>Research Progress in MCDB (student speaker)</td>
<td>1</td>
<td>F, W, S</td>
</tr>
<tr>
<td>MCDB 263</td>
<td>Research Seminar in MCDB (outside speaker)</td>
<td>1</td>
<td>F, W, S</td>
</tr>
</tbody>
</table>

Electives

Two graduate literature courses each year until advancement to Ph.D. candidacy (MCDB 265, 266, 268, 290, 595)

1. Students must receive a minimum of 30 units (core course modules (16 units), elective courses, research units, and literature units) of upper-division and graduate coursework in the department.

2. Students must receive an average of a B or better in the core course modules given each quarter and no grade lower than a "C" in a module.

3. Students must receive a B or better in each elective course (see Appendix I for pre-approved elective course list); courses outside the department may be substituted upon prior written approval of the Faculty Graduate Advisor.

4. Lab rotation consists of 3 units of MCDB 596 (directed research) per quarter. In subsequent quarters, students are expected to enroll in MCDB 596, but no more than one half of the units counted toward the degree can be comprised of MCDB 596.

All required graduate lecture courses are to be taken for a grade. Units in the following courses may not be counted towards the unit degree requirement: MCDB 260, 262, 263, 269, 500, 501, and 502.

It is expected that all Ph.D. students be enrolled as ‘full time’ students and earn a minimum of 12 course units each quarter, and that most of the course requirements (see below) will be completed during the first year of graduate study. All course requirements must be completed prior to advancement to candidacy.

Teaching Requirements

Departmental TA orientation/practice/technique courses (MCDB 500, 501, 502); two quarters of TA service being a degree requirement.
Academic Standards. Ph.D. students should generally register for lecture courses, literature courses, and research units for letter grades rather than S/U. In all programs, students are expected to maintain a minimum cumulative grade point average of 3.0. Failure to maintain this average will cause the student to be placed on academic probation (according to the policy of the Graduate Division) and may lead, in extreme cases, to dismissal from the program. Also, Research and Teaching Assistants should meet the GPA standard of 3.0. Students admitted with undergraduate deficiencies must complete all required undergraduate courses, with a letter grade of B or better, during the first year of study. Students in the Ph.D. programs must receive an average of a B or better in all core course modules given each quarter and no grade lower than a "C" in a module, in addition to receiving a B or better in all other coursework.

Failure to meet minimum grade standards will cause the student's record to be reviewed by the Graduate Committee. Fellowship support is awarded on the basis of excellence and may be jeopardized by poor academic performance. In cases of poor academic performance, the Graduate Committee may prescribe appropriate remedial action or, in extreme cases, recommend dismissal from the program to the program faculty. The program faculty must approve a dismissal recommendation before it is submitted to the Graduate Division. The Faculty Graduate Advisor will inform a student of any decision affecting the student's status (see also PERIODIC EVALUATION OF STUDENT PROGRESS AND STATUS).

Laboratory Rotations. All entering graduate students in the MCDB Doctoral program (including M.A./Ph.D. program) who are supported wholly or in part by institutional funds (including University fellowships, teaching assistantships, traineeships, etc.) are expected to complete three one-quarter long laboratory rotations during their first year of study. For first-year students supported entirely by faculty research grants, the three rotations are not mandatory, but are highly recommended.

Laboratory rotations serve two purposes: 1) students learn first-hand about research efforts in several different areas, thus broadening a student's research perspective; and 2) they allow students and mentors to "match up" so a research advisor may be selected. Each laboratory rotation consists of 3 units of MCDB 596 under the instruction of the appropriate faculty member. Although, in principle, this translates into a minimum commitment of 15 hours per week in the research laboratory, research is the core of a doctoral training and it is assumed that students will devote much more than this to their research efforts during rotations. Grades will be assigned according to the Satisfactory - Unsatisfactory (S/U) grading system, on the basis of a laboratory meeting presentation or a written summary of the student's laboratory experience, at the faculty member's discretion.

First year students are expected to rotate in MCDB faculty members' labs. Exceptions will be considered on an ad hoc basis, and must be requested in writing at least one month in advance. Financial support to rotate in a non-MCDB lab will be determined in consultation with the graduate committee and the sponsoring faculty member.

The Faculty Graduate Advisor, in consultation with the faculty, will be responsible for assigning students to particular laboratories each quarter. Incoming students are expected to submit to the Staff Graduate Advisor their laboratory preferences in the form of a rank-ordered list of three or four names. These lists should be submitted during the first week of classes for fall rotations, and during the last week of fall and winter classes for winter and spring rotations. Students are encouraged to meet with faculty with whom they are interested in doing laboratory rotations prior to submitting their rotation requests.

During the spring quarter, Ph.D. students should initiate discussions with prospective mentors about joining their research groups for their dissertation research. All students are
normally expected to decide on their doctoral research mentor by the end of their first academic year.

Ph.D. Dissertation Committee

The Ph.D. dissertation committee is to be formed (in consultation with the students’ advisor) and convened by spring quarter of the second year, and annually thereafter to remain in academic good standing. Prior to this meeting, students will provide the dissertation committee with a written proposal that briefly describes their proposed research plans. The precise format of the written proposal will be up to the individual research mentor and dissertation committee. It is expected that students will develop this plan in close collaboration with their mentors and other members of the dissertation committee. If the dissertation committee approves the research plan at the conclusion of the meeting, the research mentor will send a note to the Staff Graduate Advisor indicating this. If the dissertation committee does not approve the research plan, the student will have the opportunity to revise the plan and a second meeting will convene within 3 months of the first meeting. If the committee does not approve the research plan at the end of the second meeting, it should dissolve itself and the student will be subject to dismissal from the doctoral program. The research mentor is responsible for communicating to the Staff Graduate Advisor the outcome of the meeting. In the circumstance where a committee dissolves itself, the student may appeal to the graduate committee for the opportunity to formulate a new dissertation committee.

The candidacy exam may not be taken until the thesis committee has convened and approved the thesis proposal. Thereafter, the student will meet with their dissertation committees at least once a year to review progress and obtain advice from members of the committee.
Ph.D. ADVANCEMENT TO CANDIDACY EXAMINATION

Ph.D. students must complete one qualifying examination consisting of a written research proposition followed by an oral defense of the proposition. As a rule, the first attempt at the examination must take place no later than the end of Fall quarter of the third year of graduate study. If the student fails the examination, the second attempt must be completed by the end of spring quarter.

Ph.D. PROPOSITION EXAMINATION

Prior to the examination. Prior to the proposition examination, students are expected to have rectified any deficiencies in their undergraduate preparation and have taken the required graduate core courses. If any of these expectations are not met, the Faculty Graduate Advisor (acting for the Graduate Committee) will notify the student regarding appropriate remedies and any revision of the scheduling of the proposition examination. Students may take the exam concurrently during the same quarter that they are completing any remaining required course work. In any event, students will not advance to candidacy until all required course work is satisfactorily completed.

Examination Committee. The examination committee will consist of four MCDB faculty members that are selected by the graduate advisor and will not include the research mentor.

Nature of Proposition. The proposition must be focused on a topic unrelated to the student's own dissertation project and different from that prepared for the MCDB Proposal Preparation class (MCDB 221) [see Consultation on Proposition below].

Submission of Specific Aims. The proposition topic and general research plan must be pre-approved by the graduate committee. Students will submit “Specific Aims” which will consist of a title page, followed by a brief description of the research problem and proposal objective(s), followed by a list of the actual specific aims. This section should roughly correspond to the abstract and specific aims sections of the written proposition, as described below. The title page should include a tentative title of the proposal along with the following information: (i) student’s name; (ii) student’s email address; (iii) name of the student’s thesis advisor and; (iv) a brief description of the student’s dissertation topic. The entire document including title page should not exceed two pages single spaced. One page of figures (optional) can be appended. One paper copy and a PDF formatted electronic file of the Specific Aims must be submitted to the Staff Graduate Advisor by September 15th (or the next work day), during the 3rd year of graduate study.

Specific Aims will be evaluated by the Graduate Committee in terms of the acceptability of the proposed area and other criteria established for proposals. The Graduate Committee will notify the student, within about one week of submission, whether the research topic and specific aims are acceptable. If acceptable, the Graduate Committee may make constructive comments for the student to consider in writing their proposal. If unacceptable, the reasons will be given to the student. The student must then submit revised Specific Aims no later than one week after receiving notice regarding the original Specific Aims’ unacceptability and the revised version will again be evaluated by the committee. Resubmission of revised Aims after they have been approved by the Graduate Committee is not allowed.

Scheduling the Examination. The Staff Graduate Advisor schedules all proposition examinations. The first attempt at the examination must take place no later than the end of Fall quarter, during the 3rd year of graduate study. If the examination has not been scheduled by the end of Fall quarter the student will be placed on academic probation. If the student fails the
examination, the second attempt must be completed by the end of spring quarter, during the 3rd year of graduate study. If by the end of spring quarter of the 3rd year of study, (1) a second attempt has not been made or (2) the student fails a second attempt he/she will be subject to dismissal from the Ph.D. program.

Submission of Proposition. Five complete paper copies of the proposition and a PDF formatted electronic version (see Proposition Format and Content below) must be submitted to the Staff Graduate Advisor two weeks prior to the date of the examination. Students who have detected a major flaw in their already submitted proposition may submit five copies of a revised proposition, with an explanation for the need for the revision, no later than one week after the date of the first submission (i.e., no later than one week prior to the examination date).

Proposition Format and Content. The written version of the proposition must consist of a title page and the five sections described below. The proposition must be typewritten in 12 point font with 0.75 inch margins on both sides as well as top/bottom. The abstract and literature cited should be single-spaced; the rest of the proposal must be double-spaced. The entire proposal (excluding Title Page and Literature Cited) must not exceed 15 written pages, with 2-3 appended pages of figures/tables permissible (4-6 figures/tables maximum). Legends must be included with all figures/tables. Failure to adhere to these guidelines may result in the return of the proposal to the student.

Section 1 -- Title Page and Abstract. The title page should contain the following: 1) a descriptive title of the proposition; 2) the general topic area of the proposition (e.g., biochemistry of nucleic acids; molecular dynamics of the cytoskeleton; plant development; mechanism of enzyme action); 3) the name of the student's research advisor (known or anticipated); 4) a one-paragraph description of the student's anticipated dissertation topic or research problem (even if only tentatively identifiable at the time). 5) Abstract -- the proposal abstract may not exceed 250 words. It should include background information, significance of the problem to be investigated, and the general approach to be used.

Section 2 -- Background/Significance. This section should be approximately five pages long. It should include a concise description of the significance of the field including relevant background material and the current status of the field. Importantly, there must be a clear description of the most significant previous work in the literature leading up to a description (can include a figure or table) of the specific data that supports the hypothesis of the proposal. The rationale behind the proposed experimental approach should be described and the significance of the expected results should be discussed. All statements must be documented with references.

Section 3 -- Specific Aims. This section should be less than one page. It should comprise a very short paragraph describing the overall goals of the proposed research (with minimal redundancy with the Background/Significance section) followed by the specific aims of the proposal, which should be listed and described. (Each specific aim should be amenable to a two to three sentence description.)

Section 4 -- Research Design. This section should be approximately nine pages. The details of the research plan should be laid out, including a description of the types of proposed experiments, their purpose and the underlying techniques and methods to be used. The principal experiments should be described in the sequence in which they might be carried out. (A flow chart can be helpful in this regard; also, the use of appropriate figures -- e.g. the schematic representation of a plasmid construct, or a protein's domain structure -- is encouraged). It should be indicated how data will be analyzed to provide answers to the specific aims outlined earlier. It should also be indicated how the possible results obtained in given experiments will be interpreted to permit unambiguous decisions regarding alternative
hypotheses or models that are being examined. Control experiments, possible difficulties and alternative approaches should be discussed. Excessive experimental detail (on the order of buffer composition, gel preparation procedures, antibody production, etc.) should be avoided, but the student should be prepared to discuss technical details during the oral defense of the proposition. The emphasis should be on experimental design as opposed to a rote description of methodology.

Section 5 – Literature Cited. A complete list of citations is required. Each reference should be cited by number (as opposed to [author, year], for example) and must contain the full author list (as opposed to Smith, A., et al.), year, the title of the paper and inclusive page numbers.

Consultation on the Proposition. The purpose of the exam is to evaluate the student's ability to formulate and defend an experimental research plan. While discussion with other students, post-docs and/or faculty members is allowed and encouraged throughout the process, the final research plan must represent ideas originating from the student and the written version of the research proposal for the examination must be the unaided product of the student. The written proposal may not be circulated to anyone prior to its submission. However, after the proposition has been submitted, the student may enlist the help of a group of graduate students and postdoctoral fellows to give a 'mock exam' to aid the student's preparation for the oral defense.

Oral Defense of Proposition. The student is expected to have a solid intellectual understanding of the proposition. The background should be understood fully: the student should know who the major contributors have been and should be able to critically evaluate their contributions. The student should also be able to discuss the significance of the proposal and will be expected to defend the rationale for the proposed experimental approach. The student will also be expected to draw on other, relevant areas of knowledge. Precedents for the approach and the conceptual and theoretical basis for all proposed techniques should be understood. The student must also be able to demonstrate a thorough understanding of the basic knowledge relevant to the proposed research. The defense of the proposition is expected to be conducted with emphasis on the proposal itself; students should expect questions regarding basic biochemical and molecular biological principles in areas relevant to their proposal. Examination committees will assume that the student's preparedness in the broad field of molecular, cellular, and developmental biology will be commensurate with the successful completion of relevant course requirements. The oral examinations are 2-3 hours in length.

Evaluation of Oral Examination. Immediately after the oral examination the examination committee will review the student's examination performance. The student's research advisor will then join the meeting of the examination committee in order to participate in the final decision regarding the outcome of the examination (the research advisor serving as a consultant) and admission to Candidacy (the research advisor serving as the chair of the student's Dissertation Committee). The examination committee will make the final decision regarding the outcome (Pass or Fail) of the examination. In the case of a Pass, the committee may specify that additional courses be taken. All such imposed requirements must be completed to the satisfaction of the examination committee prior to the advancement of the student to candidacy. The examination committee will inform the student about the outcome of the examination as soon as possible. A written report summarizing the outcome of the examination and any advice from the committee may be provided to the student by the examination committee chair. In the case of a passing examination, the examination committee will complete and sign the form recommending admission to candidacy. If the examination committee imposed any special requirements, the recommendation for admission to candidacy will not be completed until such requirements have been met. (Advancement to candidacy requires payment of a fee of $65, but has a number of advantages including remission of some
of a student's educational fees and eligibility for student travel awards from the Academic Senate).

Repetition of Proposition Examination. A student who fails the proposition examination will be permitted, as a rule, to repeat the examination once, unless the student's progress in the laboratory, in course work, or in the remediation of course and language deficiencies, is also unsatisfactory. The second attempt must be made by the end of spring quarter, during the 3rd year of graduate study. If the student fails the second attempt at the examination, he/she will be dismissed from the Ph.D. program and automatically placed in the Master’s program.

PERIODIC EVALUATION OF STUDENT PROGRESS AND STATUS

The performance of all graduate students will be reviewed and evaluated at least once each year by the Graduate Committee. The Graduate Committee in consultation with the Research Advisor will review problematic cases. These reviews and evaluations will focus, as applicable, on the student's 1) progress and ability in the laboratory, 2) progress and performance in courses, 3) progress toward the remedy of course and language deficiencies, and 4) performance on Ph.D. proposition examination.

The Faculty Graduate Advisor will, as necessary, advise students upon completion of their first year regarding their performance. Advice to other students will be given, as appropriate, on the student's progression toward the desired degree after review by the appropriate program faculty. Such advice may include particular recommendations, notice of specific requirements as a consequence of certain deficiencies, or dismissal from the program. However, no recommendation will be made to the Graduate Division that a student be dismissed from the program without the endorsement of the Graduate Committee.

Monitoring Progress of Students after Advancement to Candidacy

The student will meet with their dissertation committees at least once a year to review progress and obtain advice from members of the committee.

DOCTORAL DISSERTATION AND MASTERS THESIS

The capstone of graduate research is the dissertation, for Ph.D. candidates, and the thesis, for M.A. (Plan 1) candidates. The research underlying the dissertation or thesis must be conducted under the mentorship of a faculty member, the research advisor. Students are urged to begin -- typically, well before the end of their first graduate year -- informal consultations with faculty members regarding the possibility of joining one or another faculty-led research group. The initiative for these consultations must be the student's. Faculty members welcome such initiatives and students should not perceive such consultations -- especially early ones -- to carry an implied commitment to the eventual establishment of a student-mentor relationship. This relationship must be established by mutual consent and should be established only after thoughtful consideration of the several potential possibilities for research in an area of interest to the student. Such possibilities may be discovered through direct conversations with faculty members (and their graduate students and postdoctoral associates) and through formal laboratory rotations. In any case, it is understood that even a 'commitment' may be tentative and may be broken if experience does not sufficiently match the expectations of the student or faculty member.
The research advisor serves as the chair of the student's Dissertation or Thesis Committee. These committees are formally appointed by the Dean of the Graduate Division, upon nomination by the MCDB Department Chair. The nominations are expected to reflect the preferences of the student's research advisor who will serve as committee chair. Typically, the committee's tentative membership will emerge from a discussion between the student and the research advisor. Of course, the consent of the proposed committee members must be secured before the committee slate is submitted for nomination. The Dissertation Committee (of at least four members, including the chair) should be appointed as soon as practicable after the student's association with a research advisor. It cannot be formally appointed until after the student's successful completion of all required courses. An M.A. Thesis Committee (of at least three members, including the chair) must be appointed no later than the beginning of the student's last academic quarter of graduate study.

Committee members may be consulted at any time during the research phase of the student's graduate study at the discretion of the student or the Committee chair. Also, Committee members may inquire on their own initiative into the student's progress. An annual meeting of the student with the Dissertation Committee is required in any case.

A principal function of the Dissertation or Thesis Committee is to critically read and ultimately approve the dissertation or thesis. Typically, a 'clean' dissertation or thesis draft that has already received the mentor's approval is submitted to members of the committee whose critical review may aid the student in the completion of the final product. It is the student's responsibility to ascertain that committee members will be available for reading the dissertation or thesis in a timely fashion. Committee members must be given a reasonable amount of time (at least two weeks) for the completion of this task. Students must advise the appropriate Staff Graduate Advisor and all members of their committees of their intent to file a dissertation or a thesis by the end of the second week of the quarter in which they intend to file.

All Ph.D. candidates must also give an oral defense of the dissertation and/or a formally announced seminar. It is the student's responsibility to make the necessary arrangements for the seminar presentation, with the assistance of the Staff Graduate Advisor.

PETITIONS

As a rule, students may petition for leaves of absence, inter-program transfers, or regarding certain degree requirements. In most cases, petitions must be made on special forms to be obtained from the Staff Graduate Advisor. If a student is formally associated with a research advisor, this advisor must signify approval of any petition by initialing it. Finally, the Faculty Graduate Advisor must sign petitions before they can be submitted to the Graduate Division for action.

Leaves of Absence. All students are expected to be 'continuously registered' unless the Dean of the Graduate Division approves a leave 'under special circumstances'. Special limitations apply to students who are not U.S. citizens: they may not apply for a leave of absence unless all of their course and residency requirements have been met or, in case of students in Ph.D. programs, unless they have been advanced to candidacy.

Adding the M.A. Program by Ph.D. Program Students. After formal admission to Ph.D. candidacy, students in a Ph.D. program may petition for a retroactive admission to an M.A. program and award of the M.A. degree. The Faculty Graduate Advisor will act on such petitions.
Transfers Between Graduate Programs. Students may petition for transfer between Plan 1 (thesis) and Plan 2 (examination) of the Masters program, or between the MCDB and the BMSE programs. Students contemplating such transfers should first seek information regarding the procedure from the Staff Graduate Advisor, and regarding the academic implications from the Faculty Graduate Advisor. In all cases, the student's petition should contain a concise justification for the transfer. Such petitions will be evaluated in terms of the same criteria and by the same procedures that apply to original admissions to the program into which the student seeks entry.

Transfers between Plan 1 and Plan 2 of the Masters program. Since admission into the Masters program occurs, as a rule, under Plan 2 (examination), any transfer between the two plans would typically occur from Plan 2 into Plan 1. A student seeking such a transfer should have made satisfactory progress in course work. In addition, the student's prospective research advisor must provide written support for the petition and affirm willingness to serve as the student's M.A. Thesis Committee chair.

Transfers from M.A. to Ph.D. programs. Students admitted to M.A. programs may petition to transfer into a Ph.D. program, although such petitions should only be made under exceptional circumstances and on the basis of compelling justification. The Graduate Committee will act upon petitions, and admission will be based on the same criteria applied to applications from all other entering Ph.D. students. Successful transfer from M.A. to Ph.D. programs will also depend on satisfactory progress in all graduate courses and written support by the Principal Investigator, and support by the Graduate Committee. If the petition is approved, the student should consult with the Faculty Graduate Advisor regarding Ph.D. program requirements. If the Graduate Admissions Committee is inclined to deny the petition, the Committee will consult with faculty members who supported the petition and may also consult with the program faculty body before making a final decision.

Dropping the M.A. Program by M.A./Ph.D. Program Students -- Students admitted to the M.A./Ph.D. program is expected to successfully complete the course requirements for the M.A. degree. Continuation in the Ph.D. program will be contingent upon the successful completion of the qualifying examination consisting of written research proposition followed by an oral defense of the proposition, as outlined above, and two letters of support from program faculty, including one from the student's mentor.

After a minimum of two quarters of graduate study, students originally admitted to the M.A./Ph.D. program may petition to drop the M.A. requirement on the basis of satisfactory progress in 'core' graduate courses and the written support of at least one faculty member. The Faculty Graduate Advisor following review by the Graduate Admissions Committee will act upon such petitions.

Transfers from Ph.D. to M.A. programs. A student in the Ph.D. program may petition for the M.A. degree instead of the Ph.D. degree. Such a petition should contain clear justification and be supported by at least one faculty member best acquainted with the student's progress in the Ph.D. program. In some cases, when a student's progress in a Ph.D. program is marginal or unsatisfactory, the student may be recommended for a terminal M.A. degree.

Transfers between MCDB and BMSE Ph.D. programs. Petitions of this nature should be made with justification and be supported in writing by at least one faculty member familiar with the student's academic performance and laboratory progress, if applicable. The Graduate Committee will act on the petition. If it is approved, the student should consult the Faculty Graduate Advisor without delay regarding program requirements. If the Committee is inclined to deny the petition, it will consult with any faculty members who support the petition and may consult also with the appropriate program faculty body before making its final decision.
FINANCIAL AID

Every effort is made to provide financial support to students in good standing in the MCDB graduate program. In the allocation of financial aid, students in good standing in the Ph.D. program are given preference. It is the student's responsibility to observe application deadlines and requirements thoroughly. Students are urged to keep informed regarding opportunities for financial aid. Eligible first year students are encouraged to apply for extramural pre-doctoral fellowships from the National Science Foundation, the American Cancer Society, and the Howard Hughes Medical Institute. Additional fellowship opportunities exist for members of minorities, women, and others. The office of the Staff Graduate Advisor and the office of the Graduate Division should be considered as the primary information sources.

University Scholarships or Fellowships are usually awarded in conjunction with admission to a Ph.D. program. The Graduate Admissions Committee makes recommendations for such awards. Very limited funds may be available for continuing students who have advanced to candidacy.

Fellowships (Pacific Merit, Amgen, etc.) are also awarded on the basis of excellence in conjunction with admission to a Ph.D. program. However, in exceptional cases of funding emergencies, some awards may be made to continuing students in response to an application by a student, supported by the student's research advisor.

Non-Resident Tuition Waivers are typically awarded in conjunction with admission to a Ph.D. program or later if the student, because of non-U.S. citizenship, is not able to establish California residency after a year of graduate study. It is the responsibility of first year out-of-state students to establish California residency before their second year of study. As a matter of University policy, students appointed to Research Assistantships receive payment of their fees and tuition by the extramural grant, which supports their Research Assistantship.

Research Assistantships are expected to provide the principal support of Ph.D. students, particularly after their first graduate year. Students should apply for such support directly to their research advisors.

Students in their second and third year of study are encouraged to apply for extramural pre-doctoral fellowships from relevant funding agencies (e.g. NIH, American Heart Association). Such fellowships typically support 2-3 years of stipend and fees, and are a prestigious addition to a student's graduate accomplishments.

Teaching Assistantships are allocated, upon proper application, to newly entering students and continuing students by the Staff Graduate Advisor. Students should consult with their mentors about their needs for TA support in the coming year. The application deadline for 2007-08 Teaching Assistantships in the Department of MCDB is June 7, 2007.
Appendix I
Pre-approved Graduate Elective Lecture Courses

222. Sequence Analysis (2) Poole (F)
232. Bacterial Pathogenesis (3) Mahan (W)
245. Post-translational Processing of Proteins (4) Waite (S)
251. Neurobiology I (4). Cellular Organization and Biophysics of the Nervous System Ma/Vandenberg (F)
252. Neurobiology II (4). Molecular and Cellular Neurobiology Clegg/ Kosik (W)
253. Neurobiology III (4). Developmental Neurobiology Feinstein (S)
293. Computational Methods in Biochemistry-Molecular Biology (1) Christoffersen (W)

Course electives from the pre-approved list are to be considered first. If none of the pre-approved courses are relevant to your needs/research interest you may petition to take other graduate-level courses in MCDB. If there are graduate courses outside of MCDB that are more relevant to your needs/research interest, you may petition to have those to be approved. Please submit all petitions to the Staff Graduate Advisor, who will forward them to the MCDB Graduate Committee for review.

1) List of Pre-Approved Courses in Appendix I of the Guide to Graduate Study.

2) Graduate level courses (200 series) in MCDB. Students can petition to take graduate level courses (200 series) in MCDB that are not from the pre-approved list -- with a description of the class and why it is preferred.

3) Graduate level courses (200 series) outside of MCDB. Students can petition to take graduate level courses (200 series) outside MCDB -- with a description of the class and why it is preferred.

Appendix II
MCDB Graduate Course Descriptions

203. Cell Biology
(4) Ma
Prerequisites: MCDB 1A-AL; and, MCDB 1B-BL or EEMB 2-2L, or equivalents.
Not open for credit to students who have completed Biology 237. Lecture, 3 hours; discussion, 1 hour.
Introduction to the structure and function of cell organelles: membranes, nucleus, mitochondria, chloroplasts, endoplasmic reticulum, golgi apparatus, lysosomes, microbodies, microtubules, cilia, centrioles, and microfilaments. (W)

208AL. Biochemistry Computer Laboratory
(2) Sears
Prerequisite: MCDB 108A (may be taken concurrently).
Recommended preparation: Mathematics 3A-B or 34A-B. Lecture, 1 hour; laboratory, 2 hours.
Computer laboratory analysis of biochemical structures and the dynamics of their interactions with other molecules. Students are required to submit a structural analysis paper on a topic of their choice.

212. Molecular Virology
(5) Samuel
Prerequisites: MCDB 108A-B-C and 101A-B or equivalent.
Not open for credit to students who have completed Biology 212. Lecture, 5 hours.
Consideration of selected animal viruses in terms of structure, mechanism of genetic
expression, and effects of viral gene expression on cell function, as well as aspects of the virus-host interaction including viral persistence, interference, and interferon.

220A. Chromosomes and Cell Cycle
(2) Staff
Prerequisite: graduate standing. Lecture, 2 hours.
Structure and organization of the nucleus, chromatin and chromosome structure, organization, and function; DNA replication and replication origins; eukaryotic cell cycle regulation. (W)

220B. The Cytoskeleton
(2) Wilson
Prerequisite: graduate standing. Lecture, 2 hours.
Structure and function of the eukaryotic cytoskeleton. Structure assembly and function of microtubules, microfilaments, and intermediate filaments. (W)

220C. Membrane Dynamics and Cell-Cell Interactions
(2) Kosik, Ma
Prerequisite: undergraduate biochemistry (e.g., MCDB 108A-B-C or Chemistry 142A-B-C) and genetics (e.g., MCDB 101A). Lecture, 2 hours.
Structure and dynamics of biological membranes and membrane proteins, protein translocation and sorting in the endomembrane system of eukaryotic cells, extracellular matrix protein structure/function, cell-matrix and cell-cell interactions, cell adhesion receptors, transmembrane signaling by cell adhesion receptors. (W)

220D. Experimental Cytology and Digital Imaging
(4) Fisher
Prerequisite: consent of instructor. Lecture, 2 hours; laboratory, 6 hours.
Introduction to imaging cellular substructure with the light microscope. Students receive theoretical and hands-on experience in obtaining maximum data from biological specimens using optical and digital enhancement techniques. (S)

221. Preparation and Evaluation of Research Proposals
(2) Lew
Prerequisite: graduate standing. Lecture, 2 hours.
Instruction in preparation, writing, and evaluation of research grant proposals. (S)

222. Sequence Analysis
(2) Poole
Prerequisite: consent of instructor. Lecture, 1 hour; discussion, 1 hour.
Analysis of DNA and protein sequence data. Topics include protein property prediction, defining sequence similarity, sequence comparison, and sequence database searching. (F)

223. Signal Transduction
(2) Christoffersen, Mahan, Samuel, Thrower, Vandenberg, **Prerequisite:** graduate standing. Lecture, 2 hours.
A cell’s growth is controlled by positive and negative cues from its surroundings. Discussion of the cell’s signaling mechanisms that recognize these cues and initiate an intracellular set of events that generates a response. (S)

225. Development
(2) Foltz, Rothman, Finkelstein
Prerequisite: graduate standing. Lecture, 2 hours.
The molecular mechanisms of pattern formation and cellular differentiation that underlie
developmental processes in a variety of important model systems. (S)

226A. Basic Pharmacology
(4) Staff
Prerequisite: consent of instructor.
Not open for credit to students who have completed Biology 219A. Lecture, 3 hours; discussion, 1 hour.
History and scope of pharmacology as a basic science; principles of drug action and relationship of pharmacology to physiology, chemistry, biochemistry emphasized. (F)

226B. Basic Pharmacology
(4) Vandenberg
Prerequisite: consent of instructor.
Not open for credit to students who have completed Biology 219B. Lecture, 3 hours; discussion, 1 hour.
Receptor signalling mechanisms; pharmacology of neurotransmitter and hormone receptors; molecular and cellular mechanisms of drug-receptor interactions. (W)

226C. Basic Pharmacology: Principles and Chemotherapy
(4) Wilson
Prerequisite: consent of instructor.
Not open for credit to students who have completed Biology 219C. Lecture, 3 hours; tutorial, 1 hour.
Fundamental principles of pharmacology, drug-receptor theory, biochemical mechanisms of action of drugs. (S)

229. Protein Biochemistry
(2) Waite
Prerequisite: graduate standing.
Same course as BMSE 229.
Discussion of topics relevant to structure-function relationships in proteins, including chemical reactivity of amino acid side chains, post-translational modifications, and covalent and non-covalent interactions of multimeric structures. Case studies involve recent advances in structure-function relationships of mechanoproteins.

230. Gene Regulation
(2) Low, Samuel
Prerequisite: graduate standing. Lecture, 2 hours.
Mechanisms and regulation of transcription and translation in prokaryotic and eukaryotic organisms and their viruses. (W)

231. General Microbiology
(4) Cooper, S. Low
Prerequisites: MCDB 1A-AL; and, MCDB 1B-BL or EEMB 2-2L; and, Chemistry 107A-B and 108, or 130A-B-C.
Not open for credit to students who have completed Biology 207. Lecture, 3 hours; discussion, 1 hour.
Introduction to the biological properties of microorganisms; historical foundations of the field of microbiology; a study of the major groups of microorganisms, their structure, physiology, cultivation, and pathogenicity. (F)

232. Bacterial Pathogenesis
(3) Mahan
Prerequisite: MCDB 101A-B.
Not open for credit to students who have completed Biology 228.
Recommended preparation: MCDB 231. Lecture, 3 hours.
The mechanisms by which bacterial pathogens cause disease. Investigation of the bacterial gene products produced during infection to understand the metabolic, physiological, and genetic factors that contribute to the virulence of bacterial pathogens. (W)

232L. Bacterial Pathogenesis Laboratory
(3) Mahan
Prerequisite: MCDB 232 (may be taken concurrently).
Not open for credit to students who have completed Biology 228L. Laboratory, 6 hours; discussion, 1 hour.
The latest molecular, biochemical, and genetic techniques available for the identification of microbial gene products that contribute to infection. Study of the regulatory parameters that govern their expression.

233. Molecular and Cellular Immunobiology
(3) Sears
Prerequisites: MCDB 101A-B or 108A-B-C.
Not open for credit to students who have completed Biology 223. Lecture, 3 hours.
Introduction to, and evaluation of, the current concepts of immunology. Emphasis on immunoglobulin structure and function, cell-cell cooperation in the immune response, and the role of the major histocompatibility complex in regulating immune responsiveness. (W)

235. Experimental Strategies in Molecular Genetics
(1) Rothman
Prerequisites: undergraduate biochemistry (e.g., MCDB 108A-B-C) and genetics (e.g., MCDB 101A-B-C). Lecture, 1 hour.
Discussion of experimental strategies used to purify, analyze, and manipulate nucleic acids, isolate molecular clones from complex genomes, physically map genomes, analyze gene expression, and perform reverse genetics. (F)

245. Post-translational Protein Processing
(4) Waite
Prerequisite: MCDB 108A or 218A or Chemistry 142A or equivalent.
Same course as Chemistry 251. Lecture, 3 hours; discussion, 1 hour.
Structure/function relationships in interesting macromolecules isolated from marine organisms. Focus is on well-characterized pathways from horseshoe crabs, abalones, mussels, and fish as well as others. (S)

246. Stem Cell Biology in Health and Disease
(4) Clegg
Qualified undergraduate students may petition to enroll with instructor approval. Lecture, 3 hours; discussion, 1 hour.
Basic biology of embryonic and adult stem cells and nuclear transfer, with emphasis on latest findings from the current literature.

247. Social Dimensions of Stem Cell Research
(4) Osborne
Same course as History 247. Lecture, 3 hours.
Overview of ethical, social and legal contexts of biological research with special reference to stem cells, embryology and policy.

249. Mariculture: Research Frontiers in Farming the Sea
(4) Collins, Chapman
Prerequisite: graduate standing.
Same course as EEMB 249. Not open for credit to students who have completed Biology 249. Lecture, 3 hours; discussion, 1 hour.
Recent progress and new directions in research increasing production of valuable marine animals, plants and microorganisms. Control of reproduction, development, growth and disease in marine species; problems encountered in commercializing production; regional and biological solutions; the role of modern biotechnology. (S)

251. Neurobiology I: Cellular Organization and Biophysics of the Nervous System
(4) Fisher
Prerequisites: MCDB 1A and 1B or equivalent. Completion of both prerequisites with a grade of C or better.
Not open for credit to students who have completed Biology 208 or MCDB 214. Lecture, 3 hours; discussion, 1 hour.
Nervous system properties ranging from single cells to whole organisms, using examples from vertebrates/invertebrates studied in terms of morphology, physiology, behavior.

252. Neurobiology II: Molecular and Cellular Neurobiology
(4) Kosik, Fisher
Prerequisite: MCDB 251 with a grade of B or better. Lecture, 3 hours; discussion, 1 hour.
This second course of a three quarter neurobiology course sequence (251/252/253) will cover both top down systems level approaches and bottom up molecular approaches to major topics in neurobiology. These topics include mechanisms of sensory transduction in at least two selected sensory systems, processing of sensory information within the brain, mechanisms of muscle control, cell signaling, neuronal plasticity, neuronal polarity, and the mapping of neural information to the brain.

253. Neurobiology III: Developmental Neurobiology
(4) Feinstein
Prerequisites: MCDB 1A-1B; and, MCDB 101A or EEMB 129. Lecture, 3 hours; discussion, 1 hour.
This course begins with fertilization and moves through sequential stages in the development of the nervous system, including cell migration and differentiation, axon outgrowth and pathfinding, programmed cell death, synaptogenesis, learning, memory, neurodegenerative conditions and current strategies for neuronal regeneration.

260. Research Seminar in Molecular, Cellular, and Developmental Biology
(1) Staff
Prerequisite: graduate standing.
Not open for credit to students who have completed Biology 260. Seminar, 1 hour.
Seminars on research in progress presented by faculty of the Department of Chemistry and Department of Molecular, Cellular and Developmental Biology. (F,W,S)

262. Research Progress in Molecular, Cellular and Developmental Biology
(1) Staff
Seminar, 1 hour.
Research presentations by postdoctoral fellows and advanced Ph.D. students of research progress in the department. (F,W,S)

263. Progress in Molecular, Cellular and Developmental Biology
(1) Staff
Seminar, 1 hour.
Research seminars presented by invited speakers on current research topics. (F,W,S)

265. Literature in Virology
(1) Samuel
Prerequisites: graduate standing; consent of instructor.
Not open for credit to students who have completed Biology 265. Seminar, 1 hour.
Critical reading and presentation of the recent literature on animal viruses and host cells by graduate students, postdoctoral fellows, and staff. (F,W,S)

266. Literature in Neurobiology
(1) Fisher, Clegg, Vandenberg, Feinlein
Prerequisite: consent of instructor.
Not open for credit to students who have completed Biology 266. Seminar, 1 hour.
Critical reading and presentation of the literature in modern neurobiology. (F,W,S)

268. Literature in Plant Molecular Biology
(1) Finkelstein, Christoffersen, Cooper
Prerequisite: graduate standing.
Not open for credit to students who have completed Biology 268. Seminar, 1 hour.
Critical reading and presentation of the current literature in higher plant molecular biology, cell biology, and development. (F,W,S)

269. Literature in Pharmacology
(1) Wilson
Prerequisite: graduate standing in biological sciences.
Same course as EEMB 269. Not open for credit to students who have completed Biology 269. Seminar, 1 hour.
Critical reading and presentation of current literature in topics on pharmacology. (F,W,S)

276B. Biomolecular Materials II: Applications
(3) Safinya
Prerequisite: Physics 135 or MCDB 108A or Materials 276A. Lecture, 3 hours.

290AA-ZZ. Group Studies
(2) Staff
Prerequisite: consent of instructor.
Presentation and discussion of current research, to be selected from the following list.
A. Research in Molecular Marine Biology: Morse
B. Research in Biomineralization: Morse
BE. Biochemistry and Molecular Biology for Engineers: Feinstein
BG. Bacterial Genetics: Low
CE. C Elegans Development: Rothman
DN. Developmental Neurobiology: Clegg
LW. Microtubule Dynamics and Functions: Wilson
MM. Bacterial Pathogenesis: Mahan
MS. Biomass Spectrometry: Waite
NB. Neurobiology: Kosik
PM. Molecular Plant-Microbe Interactions: Cooper
RF. Plant Developmental Genetics: Finkelstein
S. Molecular Virology and Interferon Action: Samuel
SK. Research in Retinal Cell Biology: Fisher
V. Current Research on Cell and Developmental Biology of Fungi
VA. Molecular Neurobiology–Ion Channels: Vandenberg

293. Computational Methods in Biochemistry-Molecular Biology
(1) Christoffersen
Prerequisite: graduate standing. Lecture, 1 hour.
Survey of computational methods in molecular biology. Topics include analysis and presentation of data, database searching, quantitative image analysis, and protein homology modeling. Emphasis on utilizing accessible software tools that are designed for nonprogrammers. (W)

500. Teaching Assistant Orientation
(1) Staff
Required of all teaching assistants.
No unit credit allowed toward advanced degree. May be repeated for credit in combination with Biology 500. Workshop, 1 hour.
General orientation regarding the University of California and the Santa Barbara campus; various pertinent regulations, officials and their functions, staff and functions; services available to teaching assistants and to students. Prospective teaching assistants are encouraged to take this course during the fall quarter prior to their employment. (F)

501. Practicum in Instruction
(1-4) Staff
Prerequisite: concurrent teaching assistant employment.
No unit credit allowed toward advanced degree. May be repeated for credit in combination with Biology 501. Workshop, 3-12 hours.
Practical experience in teaching within specified areas of biology. Students will have responsibility for one or more laboratory and/or discussion sections. Staff will periodically observe teaching assistants in actual teaching situations. Evaluation forms will be completed by members of the class sections. (F,W,S)

502. Techniques of Teaching and Laboratory Class Supervision
(1-2) Poole
Prerequisite: concurrent teaching assistant employment. Required of all teaching assistants.
No unit credit allowed toward advanced degree. May be repeated for credit in combination with Biology 502. Discussion, 1 hour.
Weekly discussion and readings on techniques of teaching including lecturing, leading discussions, writing and grading exams, student-teacher interactions, classroom dynamics, and teaching philosophy. (F,W)
503. Research Practicum in Biology
(1-2) Staff
May be repeated for credit in combination with Biology 503. Tutorial, 1-2 hours.
Basic procedures and methods of research in a specified area as determined by consultation between the supervising faculty member and the research assistant. Includes weekly meetings and consultations, and formal evaluations. (F,W,S)

595AA-ZZ. Group Studies
(2) Staff
Prerequisite: consent of instructor.
May be repeated for credit to a maximum of 36 units. Individual letter designations may be repeated for credit to a maximum of 36 units. Seminar, 2 hours.
A critical review of research in selected fields of biology. Subject matter for these seminars will be selected from the following list:
A-B. Biochemistry-Molecular Biology: Staff
BC. Biochemistry/Molecular Biology: Cooper
BE. Biochemistry and Molecular Cell Biology for Engineers: Staff
BG. Bacterial Genetics: Low
DM. Molecular Marine Biology and Marine Biotechnology: Morse
DS. Molecular and Cellular Immunology: Sears
DV. Developmental Biology: Smith
EO. Genetics: Orias
F. General Physiology: Staff
G. Virology: Samuel
MM. Contemporary Topics in Biochemistry and Molecular Biology: Sears
MP. Microbial Pathogenesis: Mahan
MS. Group Studies: Staff
NN. Literature in Eukaryotic Molecular Genetics: Orias
RF. Group Studies: Staff
V. Mycology: Ross
X. Cell Biology: Foltz

596. Directed Reading and Research
(2-12) Staff
Prerequisite: consent of instructor.
Hours and credit by arrangement with faculty.

597. Individual Study for Master’s Comprehensive Examinations and Ph.D. Examinations
(1-12) Staff
Prerequisite: consent of instructor.
May be repeated for credit in combination with Biology 597. No unit credit allowed toward advanced degree. Students are limited to 24 units per examination, and 12 units per quarter. Individual study for M.A. comprehensive examinations and Ph.D. examinations.

598. Master’s Thesis Research and Preparation
(1-12) Staff
Prerequisites: M.A. (thesis) candidate and consent of committee chair.
May be repeated for credit in combination with Biology 598 to a maximum of 12 units. No unit credit allowed toward advanced degree.
For research underlying the thesis and writing of the thesis.
599. Ph.D. Dissertation Preparation

(1-12) Staff

Prerequisites: Ph.D. candidate and consent of instructor.
May be repeated for credit in combination with Biology 599 to a maximum of 12 units.
For writing of the dissertation.